Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
思路:
典型8皇后,回溯法,验证是否能放皇后位置,判断同一列,左上45°和135°方向。
bool isValid(vector& nQueens, int row, int col, int &n) { for (int i = 0; i < row;i++) { if (nQueens[i][col] == 'Q')return false; } for (int i = row - 1, j = col - 1; i >= 0&&j >= 0;i--,j--) { if (nQueens[i][j] == 'Q')return false; } for (int i = row - 1, j = col + 1; i >= 0&&j < n;i--,j++) { if (nQueens[i][j] == 'Q')return false; } return true; }void totalNQueens(int& n, int row, vector & nQueens, int& total) { if (row == n) { total += 1; return; } for (int col = 0; col < n;col++) { if (isValid(nQueens, row, col, n)) { nQueens[row][col] = 'Q'; totalNQueens(n, row + 1, nQueens, total); nQueens[row][col] = '.'; } } } int totalNQueens(int n) { vector nQueens(n, string(n, '.')); int total = 0; totalNQueens(n, 0, nQueens, total); return total; }